PENGEMBANGAN MODUL INKUIRI TERSTRUKTUR DENGAN TIGA LEVEL REPRESENTASI KIMIA

Hidayati - Hidayati

Abstract


Konsep mol merupakan bagian esensial dari pembelajaran kimia dan menjadi syarat untuk mempelajari konsep kimia lainnya. Sumber belajar yang digunakan belum menghubungkan ketiga level representasi secara utuh. Tujuan penelitian adalah mengembangkan modul pembelajaran inkuiri terstruktur untuk melihat validitas, praktikalitas dan efektifitas. Metode penelitian yang digunakan adalah metode pengembangan dengan menggunakan model Plomp. Subjek penelitian terdiri dari 141 siswa yang berasal dari dua Sekolah Menengah Atas di Kota Padang. Instrumen yang digunakan yaitu tes hasil belajar. Hasil penelitian menunjukkan bahwa modul berbasis inkuiri terstruktur yang dikembangkan memiliki nilai validitas tinggi (V=0,98), praktikalitas berdasarkan respon guru (P= 0,36) dan respon siswa (P=0,36) dengan kategori yang sangat tinggi.  Modul yang dihasilkan merupakan modul dengan tiga lvel representasi (level makroskopik, level submikroskopik dan level simbolik) yang di dalam modul terdapat aktivitas inkuiri terstruktur. Modul yang dihasilkan juga mencakup beberapa komponen seperti, pedoman guru, lembar kegiatan siswa, lembar kerja, kunci lembaran kerja, lembaran tes, kunci lembaran tes.


Full Text:

PDF

References


Aiken, L. (1985). Three Coefficients For Analyzing The Reliability And Validity Of Ratings. Educational and Psychological Measurement, 45, 131–141. file:///D:/SKRIPSI/E-SKRIPSI/ejurnal/uji coba produk/validitas/33.pdf

Ault, A. (2002). What’s Wrong with Cookbooks? Journal of Chemical Education, 79. https://doi.org/10.1021/ed079p1177

Bergqvist, A. (2012). Models of chemical bonding and crystal structure.

Boujaoude, S., & Barakat, H. (2000). Secondary school students’ difficulties with stoichiometry. The School Science Review, 81, 91–98.

Bucat, B., & Mocerino, M. (2009). Learning at the Sub-micro Level: Structural Representations. 11–29. https://doi.org/10.1007/978-1-4020-8872-8_2

Camacho, M., & Good, R. (1989). Problem solving and chemical equilibrium: Successful versus unsuccessful performance. Journal of Research in Science Teaching, 26(3), 251–272. https://doi.org/https://doi.org/10.1002/tea.3660260306

Cervellati, R., Montuschi, A., Perugini, D., Grimellini-Tomasini, N., & Balandi, B. P. (1982). Investigation of secondary school students’ understanding of the mole concept in Italy. Journal of Chemical Education, 59(10), 852. https://doi.org/10.1021/ed059p852

Chairam, S., Klahan, N., & Coll, R. K. (2015). Exploring secondary students’ understanding of chemical kinetics through inquiry-based learning activities. Eurasia Journal of Mathematics, Science and Technology Education, 11(5), 937–956. https://doi.org/10.12973/eurasia.2015.1365a

Claesgens, J., & Stacy, A. (2003). What are students’ initial ideas about “amount of substance”?:"Is there a specific weight for a mole?". Annual Meeting of the American Educational Research Association (Chicago, IL, April, 2003).

Colburn, A. (2000). An Inquiry Primer. Science Scope, 23(6), 42–44.

Dahsah, C., & Coll, R. K. (2008). THAI GRADE 10 AND 11 STUDENTS’ UNDERSTANDING OF STOICHIOMETRY AND RELATED CONCEPTS. International Journal of Science and Mathematics Education, 6(3), 573–600. https://doi.org/10.1007/s10763-007-9072-0

De Jong, O., Van Driel, J. H., & Verloop, N. (2005). Preservice Teachers’ Pedagogical Content Knowledge of Using Particle Models in Teaching Chemistry. In Journal of Research in Science Teaching (Vol. 42, Issue 8, pp. 947–964). John Wiley & Sons. https://doi.org/10.1002/tea.20078

Dori, Y. J., & Hameiri, M. (1996). “The Mole Environment”Development and Implementation of Studyware. Journal of Chemical Information and Computer Sciences, 36(4), 625–628. https://doi.org/10.1021/ci950121w

Dori, Y. J., & Hameiri, M. (1998). The ‘Mole Environment’ studyware: applying multidimensional analysis to quantitative chemistry problems. International Journal of Science Education, 20(3), 317–333. https://doi.org/10.1080/0950069980200305

Eilks, I., Witteck, T., & Pietzner, V. (2012). The role and potential dangers of visualisation when learning about sub-microscopic explanations in chemistry education. CEPS Journal.

Frank, D. V., Baker, C. A., & Herron, J. D. (1987). Should students always use algorithms to solve problems? Journal of Chemical Education, 64(6), 514–515. https://doi.org/10.1021/ed064p514

Gabel, D. L., & Bunce, D. M. (1994). Research on problem solving: Chemistry. Handbook of Research on Science Teaching and Learning, 11, 301–326.

Gabel, D. L., Samuel, K. V., & Hunn, D. (1987). Understanding the particulate nature of matter. In Journrl of Chemical Education. https://doi.org/10.1021/ed064p695

Harlen, W. (2013). Inquiry-based learning in science and mathematics. Review of science, mathematics and ICT education. Review of Science, Mathematics and ICT Education, 7, 9–33.

Hong Kwen, B. (2005). Teachers ’ Misconceptions of Biological Science Concepts as Revealed in Science Examination Papers. INTERNATIONAL EDUCATION RESEARCH CONFERENCE, December, 1–8.

Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x

Kolb, D. (1978). The mole. Journal of Chemical Education, 55(11), 728. https://doi.org/10.1021/ed055p728

Lawrenz, F. (1986). Misconceptions of Physical Science Concepts Among Elementary School Teachers. School Science and Mathematics, 86(8), 654–660. https://doi.org/https://doi.org/10.1111/j.1949-8594.1986.tb11669.x

Llewely, D. (2011). Differentiated Science Inquiry. Corwin.

Mustami, M. K., Syamsudduha, S., Safei, & Ismail, M. I. (2019). Validity, practicality, and effectiveness development of biology textbooks integrated with augmented reality on high school students. International Journal of Technology Enhanced Learning, 11(2), 187–200. https://doi.org/10.1504/IJTEL.2019.098789

Nyachwaya, J. M., Warfa, A.-R. M., Roehrig, G. H., & Schneider, J. L. (2014). College chemistry students’ use of memorized algorithms in chemical reactions. Chemistry Education Research and Practice, 15(1), 81–93. https://doi.org/10.1039/C3RP00114H

Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. https://doi.org/10.1016/j.edurev.2015.02.003

Plomp. (2013). Educational Design Research Educational Design Research. Educational Design Research, 1–206. http://www.eric.ed.gov/ERICWebPortal/recordDetail?accno=EJ815766

Plomp, T., & Nieveen, N. (2007). An Introduction to Educational Design Research.

Retnawati, H. (2016). Heri Retnawati 9 786021 547984.

Robinson, W. R. (2003). Chemistry Problem-Solving: Symbol, Macro, Micro, and Process Aspects. Journal of Chemical Education, 80(9), 978. https://doi.org/10.1021/ed080p978

SCHMIDT, H.-J., & JIGNÉUS, C. (2003). STUDENTS´ STRATEGIES IN SOLVING ALGORITHMIC STOICHIOMETRY PROBLEMS. Chem. Educ. Res. Pract., 4(3), 305–317. https://doi.org/10.1039/B3RP90018E

Schmidt, H. (1991). A label as a hidden persuader: chemists’ neutralization concept. International Journal of Science Education, 13(4), 459–471. https://doi.org/10.1080/0950069910130409

Schmidt, H. (1994). Stoichiometric problem solving in high school chemistry. International Journal of Science Education, 16(2), 191–200. https://doi.org/10.1080/0950069940160207

Sikorova, Z. (2012). The role of textbooks in lower secondary schools in the Czech Republic. IARTEM E-Journal, 4(2 SE-), 1–22. https://doi.org/10.21344/iartem.v4i2.774

Staver, J. R., & Lumpe, A. T. (1993). Chemistry Textbooks. 30(4), 321–337.

Staver, J. R., & Lumpe, A. T. (1995). Two investigations of students’ understanding of the mole concept and its use in problem solving. Journal of Research in Science Teaching. https://doi.org/10.1002/tea.3660320207

Stojanovska, M., M. Petruševski, V., & Šoptrajanov, B. (2017). Study of the Use of the Three Levels of Thinking and Representation. Contributions, Section of Natural, Mathematical and Biotechnical Sciences, 35(1), 37–46. https://doi.org/10.20903/csnmbs.masa.2014.35.1.52

Surif, J., Ibrahim, N. H., & Dalim, S. F. (2014). Problem Solving: Algorithms and Conceptual and Open-ended Problems in Chemistry. Procedia - Social and Behavioral Sciences, 116, 4955–4963. https://doi.org/10.1016/j.sbspro.2014.01.1055

Tasker, R. (1998). The VisChem Project: Molecular level animations in chemistry-potential and caution. UniServe Science News, 9, 12–16.

Tulip, D., & Cook, A. (1993). Teacher and student usage of science textbooks. Research in Science Education, 23(1), 302–307. https://doi.org/10.1007/BF02357074

van den Akker, J. (1999). Principles and Methods of Development Research. Design Approaches and Tools in Education and Training, 1–14. https://doi.org/10.1007/978-94-011-4255-7_1


Article Metrics

Abstract view : 224 times
PDF - 85 times

Refbacks

  • There are currently no refbacks.