Model Jaringan Syaraf Tiruan untuk Memprediksi Indeks Plastisitas Tanah
Abstract
Rahmawati W, Suharyatun S, Sugianti C. 2019. Artificial neural networks model to predict soil plasticity index. In: Herlinda S et al. (Eds.), Prosiding Seminar Nasional Lahan Suboptimal 2019, Palembang 4-5 September 2019. pp. 418-423. Palembang: Unsri Press.
Soil index plasticity is an important soil physical property of the soil related to the tillage intensity , especially if it is done by machine such as a tractor. This study aim is to build an artificial neural network (ANN) model that connects the soil texture with the soil index plasticity. The research was conducted in several stages, namely: (1) soil texture determination, plastic limit and liquid limit in the laboratory, (2) plasticity index calculation, (3) Soil texture-soil plasticity index ANN model built. ANN models are created using 3 input variables, namely x1: clay content, x2: silt content and x3: sand content. The model uses 2 layers, with a logsig-tangig-purelin activation function. The results of the model training resulted in a RMSE (Root Mean Square Error) value of 1.6542 and an R2 value of 0.9570. Model validation produces a correlation value of predictive data and R2 observation data of 0.9332.
Keywords: artificial neural network models, soil consistency, soil physical properties, soil texture
Full Text:
PDFReferences
Agus F., Yusrial, dan Sutopo. 2006. Penetapan Tekstur Tanah. Di dalam: Undang K et. al. (eds), Sifat Fisik Tanah dan Metode Analisisnya. Balai Besar Litbang Sumber Daya Lahan Pertanian. P. 43-62.
Bell, F.G. 2007. Engineering Geology. 2nd Edition. An Imprint of Elsevier. Butterworth-Heinemann
Boeri CN, da Silva FJN, dan Ferreira JAF. 2011. Use of artificial neural networks for prediction of codish drying optimal paramters. GJP&A Sc and Tech. 12: 1-14.
Das B. M. 2006. Principles of geotechnicals Engineering. Mason, OH : Thomson
Hermawan A. 2006. Jaringan Syaraf Tiruan: Teordan Aplikasi. Yogyakarta. Andi.
Kusumadewi, S. 2013. Membangun Jaringan Syaraf Tiruan menggunakan Matlab dan Excel Link. Yogyakarta. Graha Ilmu.
Lal R. dan Shukla K. M. 2004. Principles of soil physics. Ohio. Marcel Dekker Inc.
Mawardi M. 2011. Tanah Air dan Tanaman: Asas Irigasi dan Konservasi Air. Yogyakarta. Bursa Ilmu
Shrivastav S dan Kumbhar BK. 2009. Modeling andoptimization for prediction of moisture content, drying rates, and moisture ratio.International Journal Agricultural &Biological Engineering. 2(1): 58-64.
Siang JJ. 2005. Jaringan Syaraf Tiruan dan Pemrogramannya Menggunakan Matlab. Yogyakarta: Andi Offets.
Sutono S. Maswar dan Yusrial. 2006. Penetapan Plastisitas Tanah. Di dalam: Undang K et. al. (eds), Sifat Fisik Tanah dan Metode Analisisnya. Balai Besar Litbang Sumber Daya Lahan Pertanian. P. 251-620.
Article Metrics
Abstract view : 337 timesPDF - 322 times
Refbacks
- There are currently no refbacks.